Gene therapy approaches to cancer treatment

Richard C. Koya, M.D., Ph.D.

Assistant Professor
Division of Surgical Oncology
Department of Surgery

UCLA Human Gene Medicine Program
JCCC Tumor Immunology

UCLA Clinical Pharmacology course (M263)
Gene Therapy

Intracellular delivery of genetic material to generate a therapeutic effect by correcting an existing abnormality or providing cells with a new function.

- Virus
- Naked DNA
- Liposomes
- Dendrimers
- Ex vivo
- In situ
- In vivo
- Gene replacement
- Inherited disorders
- Vascular diseases
- Neurodegenerative
- Infectious diseases
- Cancer
- ...
Viral Vectors
Life Cycle of Replicative Viruses

- Virion binding
- Uncoating
- Reverse transcription
- Proviral DNA
- Nuclear transport
- Integration
- Transcription/translation of viral gene products
- Assembly, budding, maturation of virion

Retroviridae
Viral Vector (C-type retrovirus)

Our favorite new gene

Production of the desired protein
Characteristics of the Ideal Vector

• Large carrying capacity of foreign DNA
• Safe
• Non-immunogenic
• Efficient transgene expression
• Long duration of expression
• Allow re-administration
Summary of Vector Characteristics

<table>
<thead>
<tr>
<th>Vector</th>
<th>Expression</th>
<th>Infect Non-Dividing Cells</th>
<th>Transd. Efficiency</th>
<th>Immuno- genusity</th>
<th>Insert Size</th>
<th>Silencing</th>
<th>Safety In Humans</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>γRetrovirus</td>
<td>Stable</td>
<td>No</td>
<td>Fair</td>
<td>No</td>
<td>< 8 Kb</td>
<td>Variable</td>
<td>Fair</td>
<td>Easy</td>
</tr>
<tr>
<td>Lentivirus (HIV)</td>
<td>Stable</td>
<td>Yes</td>
<td>Fair</td>
<td>No</td>
<td>< 10 Kb</td>
<td>No</td>
<td>Unkn</td>
<td>Fair</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>Transient</td>
<td>Yes</td>
<td>High</td>
<td>Yes</td>
<td>< 10 Kb</td>
<td>n.a.</td>
<td>Fair</td>
<td>Easy</td>
</tr>
<tr>
<td>HSV</td>
<td>Transient</td>
<td>Yes</td>
<td>High (toxic)</td>
<td>Yes</td>
<td><50 Kb</td>
<td>n.a.</td>
<td>Yes</td>
<td>Difficult</td>
</tr>
<tr>
<td>Poxvirus (Vaccinia)</td>
<td>Transient</td>
<td>Yes</td>
<td>High (toxic)</td>
<td>Yes</td>
<td><25 Kb</td>
<td>n.a.</td>
<td>Yes</td>
<td>Easy</td>
</tr>
<tr>
<td>AAV</td>
<td>Stable</td>
<td>Yes</td>
<td>Fair</td>
<td>No</td>
<td><5 Kb</td>
<td>No</td>
<td>Yes</td>
<td>Difficult</td>
</tr>
<tr>
<td>Naked DNA</td>
<td>Transient</td>
<td>Yes</td>
<td>Low</td>
<td>No</td>
<td>< 10 Kb</td>
<td>n.a.</td>
<td>Yes</td>
<td>Very Easy</td>
</tr>
</tbody>
</table>
Examples of Uses of Gene Therapy for Cancer
Delivery of tumor-suppressor genes

<table>
<thead>
<tr>
<th>Gene product</th>
<th>Function</th>
<th>Expression in cell lines</th>
<th>Expression in mouse models</th>
</tr>
</thead>
<tbody>
<tr>
<td>INK4A</td>
<td>Blocks cell cycle by inhibiting CDK4</td>
<td>Growth arrest (some evidence of resistance)</td>
<td>Tumour suppression</td>
</tr>
<tr>
<td>INK4A-KIP1 fusion</td>
<td>Blocks cell cycle by inhibiting CDK4 and CDK2</td>
<td>Apoptosis</td>
<td>Regression</td>
</tr>
<tr>
<td>RB</td>
<td>Blocks cell cycle by repressing E2F</td>
<td>Growth arrest</td>
<td>Tumour suppression</td>
</tr>
<tr>
<td>p130</td>
<td>Blocks cell cycle by repressing E2F</td>
<td>Growth arrest</td>
<td>Regression</td>
</tr>
<tr>
<td>ARF</td>
<td>Protects p53 by inhibiting MDM2</td>
<td>Growth arrest</td>
<td>Not done</td>
</tr>
<tr>
<td>p53</td>
<td>Promotes cell-cycle arrest and apoptosis</td>
<td>Growth arrest; increased radiosensitivity</td>
<td>Tumour suppression; reduced metastasis</td>
</tr>
<tr>
<td>PTEN</td>
<td>Degrades 3-phosphorylated phosphoinositides, which activate growth and survival pathways</td>
<td>Growth arrest; apoptosis; increased radiosensitivity</td>
<td>Tumour suppression or no effect</td>
</tr>
<tr>
<td>APC</td>
<td>Targets β-catenin for degradation</td>
<td>Apoptosis</td>
<td>Not done</td>
</tr>
<tr>
<td>BRCA1</td>
<td>Genome Integrity</td>
<td>Growth arrest or apoptosis</td>
<td>Tumour suppression</td>
</tr>
</tbody>
</table>

APC, adenomatous polyposis coli; RB, retinoblastoma.
Inhibition of oncogene expression

<table>
<thead>
<tr>
<th>Gene product</th>
<th>Function of oncogene</th>
<th>Strategy</th>
<th>Expression in cell lines</th>
<th>Expression in mouse models</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERBB2</td>
<td>Receptor tyrosine kinase activated by EGF</td>
<td>Ribozyme</td>
<td>Blocks cell proliferation</td>
<td>Inhibition of tumour growth</td>
</tr>
<tr>
<td>ERBB4</td>
<td>Receptor tyrosine kinase activated by neuregulins</td>
<td>Ribozyme</td>
<td>Growth inhibition</td>
<td>Inhibition of tumour growth</td>
</tr>
<tr>
<td>KRAS</td>
<td>Small GTP-binding protein; activates growth and survival pathways</td>
<td>Antisense; ribozyme</td>
<td>Growth inhibition</td>
<td>Tumour regression; apoptosis; chemosensitization</td>
</tr>
<tr>
<td>HRAS</td>
<td>Small GTP-binding protein; activates growth and survival pathways</td>
<td>Ribozyme</td>
<td>Growth inhibition</td>
<td>Tumour regression</td>
</tr>
<tr>
<td>HPV E6/E7</td>
<td>E7 inhibits RB; E6 targets p53 for destruction</td>
<td>Antisense; ribozymes</td>
<td>Not done</td>
<td>No effect</td>
</tr>
<tr>
<td>BCL2</td>
<td>Inhibits mitochondrial apoptosis pathway</td>
<td>Ribozyme</td>
<td>Reduces BCL2 expression</td>
<td>Not done</td>
</tr>
<tr>
<td>Telomerase</td>
<td>Maintains telomere length to promote cellular immortality</td>
<td>Ribozyme</td>
<td>Chemosensitization</td>
<td>Not done</td>
</tr>
<tr>
<td>c-MET</td>
<td>Receptor tyrosine kinase activated by scatter factor</td>
<td>Ribozyme</td>
<td>Reduced migration; invasion</td>
<td>Not done</td>
</tr>
<tr>
<td>c-MYC</td>
<td>Transcription factor downstream of growth-factor signalling pathways</td>
<td>Ribozyme</td>
<td>Inhibits proliferation</td>
<td>Not done</td>
</tr>
</tbody>
</table>
Suicide Gene Therapy

![Diagram](image)

Enzyme-encoding gene

Viral vector → **Tumour cell**

Enzyme → **Prodrug** → **Toxin**

(by-stander effect)

Table: Enzymes and Their Products

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Prodrug</th>
<th>Product</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSV-tk</td>
<td>Ganciclovir</td>
<td>Ganciclovir triphosphate</td>
<td>Blocks DNA synthesis</td>
</tr>
<tr>
<td>Cytosine deaminase</td>
<td>5-Fluorocytosine</td>
<td>5-Fluorouracil (5-FU)</td>
<td>Pyrimidine antagonist: blocks DNA and RNA synthesis</td>
</tr>
<tr>
<td>Nitroreductase</td>
<td>Nitrobenzylxoycarbonyl anthracyclines</td>
<td>Anthracyclines</td>
<td>DNA crosslinking</td>
</tr>
<tr>
<td>Carboxylesterase</td>
<td>CPT-11</td>
<td>SN38</td>
<td>Topoisomerase inhibitor</td>
</tr>
<tr>
<td>Cytochrome P450</td>
<td>Cyclophosphamide</td>
<td>Phosphoramide mustard</td>
<td>DNA alkylating agent: blocks DNA synthesis</td>
</tr>
<tr>
<td>Purine nucleoside phosphorylase</td>
<td>6-Mercaptopurine-DR</td>
<td>6-Mercaptopurine</td>
<td>Purine antagonist: blocks DNA synthesis</td>
</tr>
</tbody>
</table>
Oncolytic viruses

Specificity to cancer is determined by tumor-specific genetic mutations.

Onyx 015
- adenovirus with deletion of the E1B 55kDa fragment (would facilitate replication in cells with a defective p53 pathway).

Telomelysin
- replication-competent Ad5
- incorporates a human telomerase reverse transcriptase gene (hTERT) promoter.

OncoVEX GM-CSF
- replication-competent HSV (HSV-1)
- coding sequence for GM-CSF under the control of the hCMV promoter
Genetic Immunotherapy

our experience
in
TCR engineered T cell adoptive transfer
to treat advanced melanoma patients
Autologous Tumor Infiltrating Lymphocytes

Genetically engineered

Cell infusion + IL-2
Preconditioning: chemotherapy

T cells

Tumor

TIL isolation

Viral vector

Engineered T cell

Peripheral blood lymphocytes
T Cell Receptor (TCR)-engineered T cells for Melanoma treatment

Human Melanoma

Subcloning anti-melanoma TCR into a viral vector

harvest T cells from new patient

Melanoma-specific T cell

Melanoma redirected T cell

Take the TCR genes from one patient who beat melanoma and use them to engineer a melanoma-fighting immune system in other patients.
UCLA Phase II F5 Clinical Trial Timeline

Baseline:
- Leukapheresis
- [¹⁸F]FDG PET
- Biopsy

Adoptive Transfer

Blood draw

Follow up:
- Leukapheresis
- [¹⁸F]FDG PET
- Biopsy

MSCV retroviral vector
MART-1 F5 TCR

UCLA GMP facility
Day 0: Stimulation
- AIMV media + 5% human AB serum
- OKT3
- IL-2

Day 2 & 3: Transduction (Txn)
- Mart-1 F5 TCR retrovirus

Day 4,5,6: Expansion
- AIMV media + 5% human AB serum
- IL-2

Leukapheresis
PBMC

Txn 1

Txn 2

Final Product
Mart-1 F5 TCR Tg PBMC

Cryopreservation in infusion bag
- 90% human serum albumin + IL-2
- 10% DMSO

Lot release testing of the clinical grade
PG13-F5af2aB C162D1 07-7-VP-1-164 Lot# 1.30/31/32

Day 7 Final Product Testing:
- Gram Stain
- Bacterial Culture
- Fungal Culture
- Mycoplasma Culture
- Endotoxin test
Untransduced T cell + melanoma M202GFP (A2.1+, MART1+)

F5 Transduced T cell + melanoma M202GFP (A2.1+, MART1+)

Light Field 10x

GFP 10x

Merged 10x

Thick arrow: melanoma cell; Thin arrow: T cell
Genetic Modification of Melanoma Patients’ Immune System Leading to Tumor Response

Effective targeting MART-1 \textit{in vivo} with TCR transgenic cells

- Skin rash
- Mole
- CD8 CTLs surrounding melanoma

May 09 (-2 mo) Oct 09 (+3 mo)
Impressive Initial Responses with TCR Engineered ACT

Before Day +30

FDG PET

F5-1

F5-3

F5-10

F5-11
Antitumor activity and specific tumor targeting by Tyr-TCR engineered T cells

Kinetic phases of distribution and tumor targeting by T cell receptor engineered lymphocytes inducing robust antitumor responses

Richard C. Koya,¹ Stephen Mok,² Begoña Comin-Anduix,² Thinele Chodón,² Caius G. Radu,³ Michael I. Nishimura,⁴ Owen N. Witte,⁵,⁶,⁷, and Antoni Ribas⁸,⁹,¹¹

¹Department of Surgery, Division of Surgical Oncology; ²Department of Medicine, Division of Hematology/Oncology; ³Department of Molecular and Medical Pharmacology; ⁴Department of Microbiology, Immunology and Molecular Genetics; ⁵Howard Hughes Medical Institute; ⁶Broad Stem Cell Research Center; and ⁷Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095; and ⁸Department of Surgery, Medical University of South Carolina, Charleston, SC 29403
Tumor Responses Correlate with TCR Transgenic Tumor Targeting

Day 1 2 3 5 7 10

Day: Day 1 Days 2-4 Days 5-7 Days 8-10
Molecular Imaging of the *In Vivo* Kinetics of TCR Engineered T Lymphocytes

Micro PET / CT

[**F**18]FHBG day 9

Melanoma specific engineered T cells accumulate in the melanoma-antigen-expressing tumor (right side)
Problems with Gene Therapy

- Suboptimal Gene Expression
- Vector Toxicity
- Insertional Mutagenesis
- Transgene Toxicity
History of Regulatory Issues for Human Gene Therapy Trials

- 1974 RAC Guidelines
- 1976 RAC Guidelines
- 1980 1st Gene Therapy Trial (unapproved)
- 1988 1st Gene Therapy Trial (approved)
- 1999 1st Gene Therapy Death
- 2002 1st Gene Therapy Cancer
Vector Toxicity

• Death of Jesse Gelsinger:
 – Due to large intra-arterial dose of adenoviral vector particles.
 – Temporary halt on all gene therapy trials.
 – Letter to IBCs and PIs requiring reporting of all SAE to RAC/ORDA (Office of Recombinant DNA Activities).
 – Nationwide audit of ongoing and completed gene therapy trials.
Insertional Mutagenesis

+/-

Transgene Toxicity

• Stem Cell Gene therapy as a cause of cancer (X-SCID clinical trials):
 – Five of the 20 patients (4 in the Paris trial and 1 in the London trial) had T-cell leukemia 2 to 5.5 years after gene therapy.
 – After chemotherapy, 4 patients survived and showed sustained remission and T-cell immunity.
 – One patient died from refractory leukemia.
 – In all cases it was found that the abnormal clone had 1 or 2 provirus integrations within a proto-oncogene locus. Many other genomic abnormalities were found.

 – Temporary halt on retroviral-mediated gene therapy trials.
Chimeric antigen receptor (CAR)-expressing T cells toxicity

Risk of “off-target” toxicity, resulting in autoimmune reaction against self-tissues

Two serious adverse events were reported:

-Anti-CD19-CD28-CD3z CAR into a patient with advanced CLL:
 -Acute sepsis, renal failure and expired 44 h following infusion.

-Anti-HER2/neu.CD28.4-1BB.CD3z in a patient with metastatic colon cancer:
 -Direct effect, cells targeted low levels of HER-2/neu expressed on pulmonary endothelium.
 -“Cytokine storm”
Human Gene Therapy Clinical Trial Regulatory Review

Federal

FDA (CBER)

OHRP

NIH (OBA) (RAC)

Local

IRB

ISPRC

IBC

G-CRC
Web site resources for more information

FDA: http://www.fda.gov

National Cancer Institute: http://www.nci.nih.gov

Cancer: http://cancernet.nci.nih.gov/index.html

Recombinant DNA Advisory Committee: http://www.nih.gov/od/oba